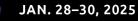
Welcome to

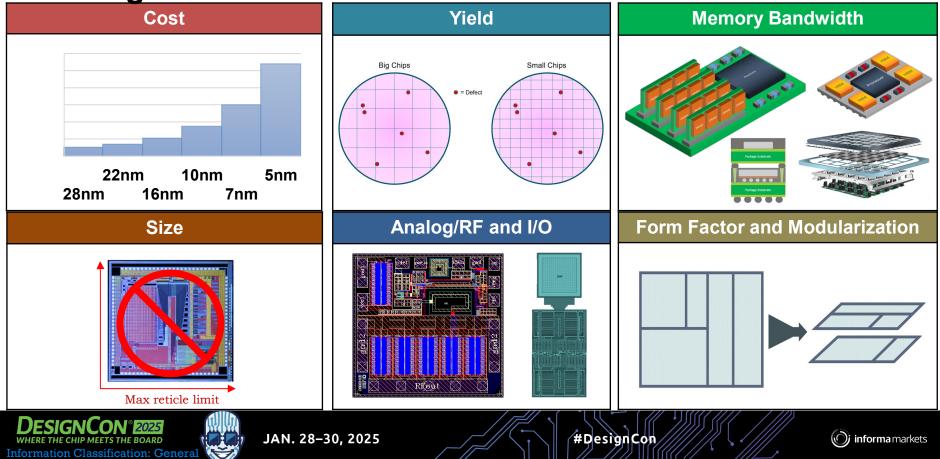
Conference

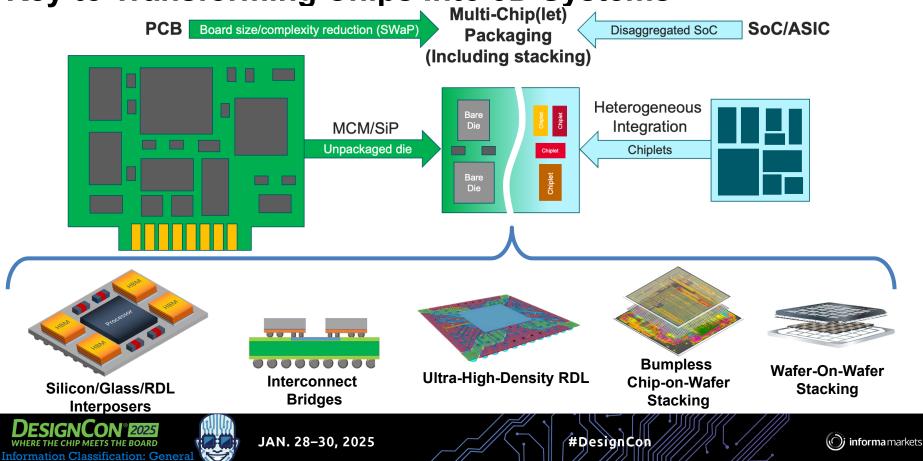
January 28–30, 2025 Santa Clara Convention Center Ехро

January 29–30, 2025


JAN. 28–30, 2025

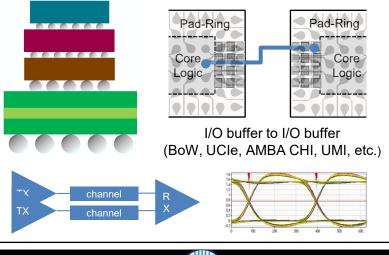
The Role of EDA as Chips Transform Into 3D Systems


John Park, Cadence



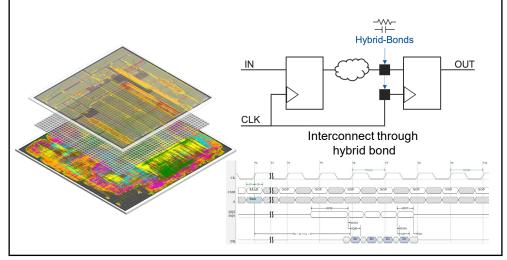
For ASIC Designers, Simply Following Moore's Law Alone Is No Longer the Best Technical and Economical Path Forward

Technology Breakthroughs in Semiconductor Packaging is Key to Transforming Chips Into 3D Systems

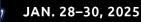


3D Packaging vs Chip/Wafer Stacking (3DHI)

3D Packaging

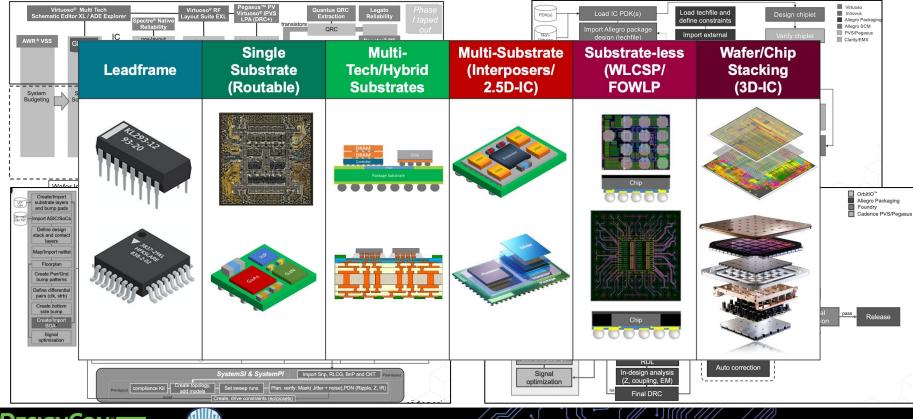

- Solder-based connections (35-150um)
- Dies designed independently

 Black-box modeling
- I/O buffer-to-buffer signaling

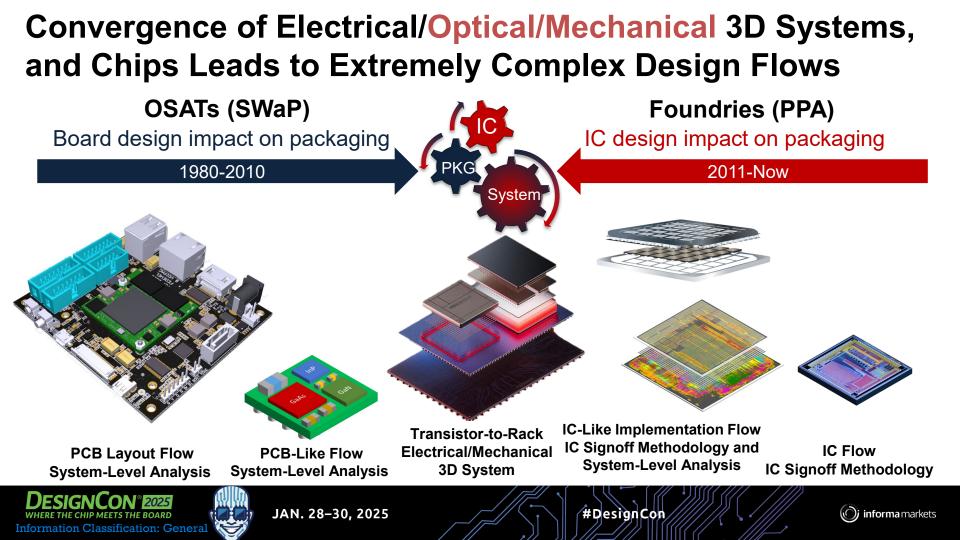


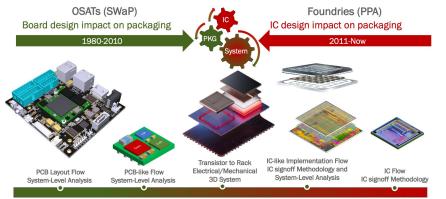
Chip/Wafer 3D Stacking

- Solder-free connections (<10um)
- Single RTL partitioned at implementation
 Full detail of IC required for layout
- DBI, hybrid-bond, cu-to-cu, and direct connection



The Wild West of Semiconductor Packaging


100s of ways to package devices



JAN. 28–30, 2025

Design and Analysis Challenges

Complex Design Flows

- Convergence of systems and ICs driving an explosion in the number of design tools and leads to complex design flows
 - Mechanical tools will be next to come
- Co-design/co-analysis across die/chiplet/package
- Support for existing and emerging 3D-IC standards
- Layout stage too late for electrical and thermal analysis
- All tools need to be three-dimensional system-aware
 Complex 3D floorplans

Implementation and Signoff

- Lack of design manufacturing and assembly data
 - Assembly design kits (ADK) are lacking
 - $_{\circ}$ Single source of truth
- Laminate design vs. silicon design
 - Advanced IC-style design rules
 - 。 SystemLVS
- Mechanical engineering tasks (warpage, cold plates, etc.)
- D2D and D2S routing bottlenecks

#DesignCon

JAN. 28–30, 2025

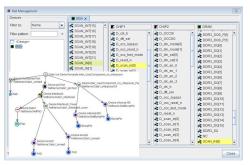
informa markets

Digital/Analog/RFIC, SiP/MCM, PCB, and System Analysis

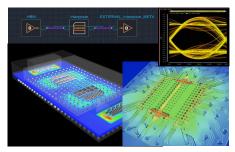
IC Design	Simulation	SiP/MO	SiP/MCM and PCB		Analysis	
Innovus™, Virtuoso®, and Microwave Office®	Spectre [®] , Legato [™] Xcelium [™]		Allegro [®] X, OrCAD [®] PSpice [®] , InspectAR, and Pulse		sius [™] , EMX® s [™] , and Sigrity [™]	
Advanced node/ML automation	Digital logic verificat	ion Higl	High-speed PCB		ctromagnetics	
Digital, analog, RF, and photonics	Reliability	Advanc	Advanced IC packaging		thermal	
MMIC	RF and AMS simula	tion Augmente	Augmented reality and ML/AI		Computational Fluid Dynamics	
Cadence.Al – C	Cadence [®] Joint Ent Generative	cerprise Data and Al Applications	AI (JedAI) Pla	tform		
Digital Design	Analog/Custom Design	Debug and Verification			ltiphysics timization	
	Ecosystem C	ollaboration and Pa	rtnerships			
	ptimized Customer and	d Cadenced Manag	ed Cloud-Based S	Solutions		

, //

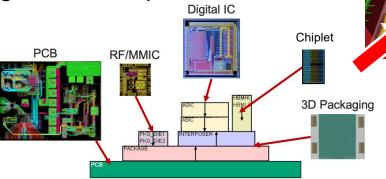
Information Classification: General



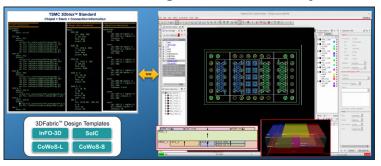
WHERE THE CHIP MEETS THE BOARD


JAN. 28–30, 2025

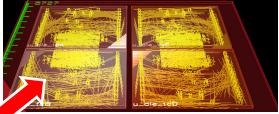
Integrity System Planner 3D system-level aggregation and optimization

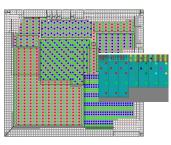


Chip(let)-chip(let)-package-board signal-mapping

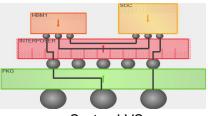


Early-Stage Power/Thermal/SI Analysis

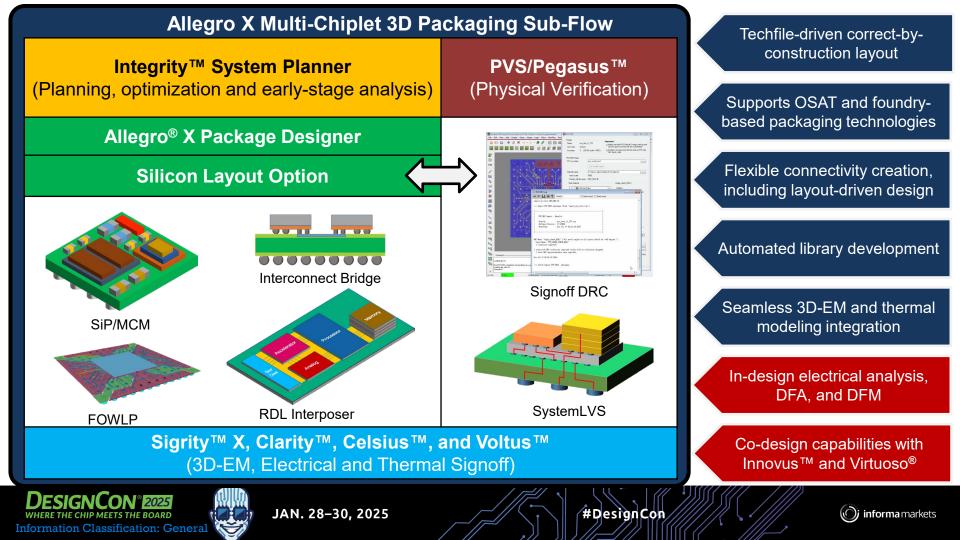

WHERE THE CHIP MEETS THE BOARD Information Classification: General

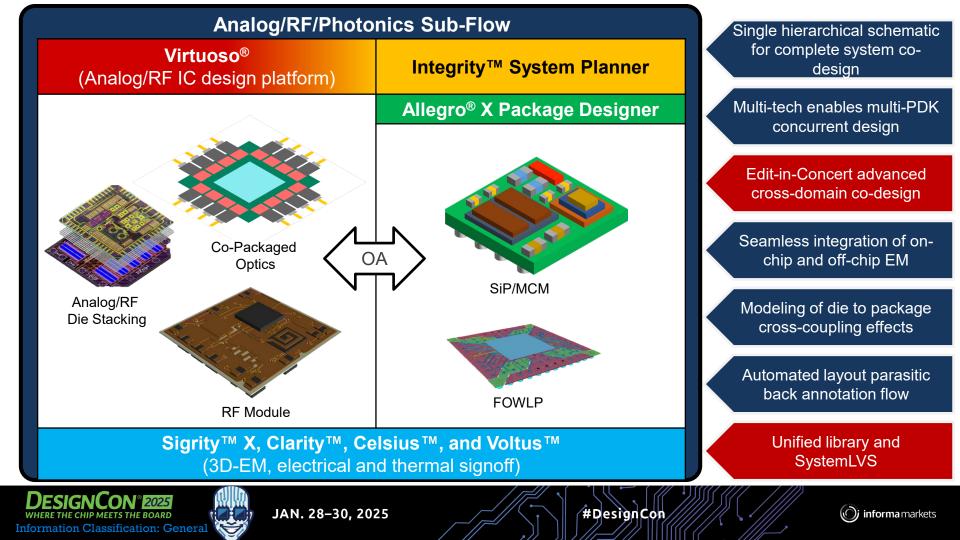


Hierarchical Planning and Optimization of System-Level Design and Connectivity



3Dblox[™] & 3DCODE Support


Advanced bump/TSV/TDV planning



SystemLVS (Rule-Deck-Free)

Cadence Capabilities Enabling Electronic Product Realization

-				
EDA Design Tools	Reference Design Flows	Design IP/Chiplets	Design Services	Government Programs
 Digital IC Analog/RF IC Advanced Packaging 3D-IC PCB MMIC Thermal Power 	 3DHI RF-IC Digital ASIC System analysis Partner software overlays 	 D2D (UCle) DIP TIP Security 	 ITAR Compliant Digital ASIC 3DHI RF module 	 DARPA CHIPS RAMP/RAMP-C ERI SHIP NGMM NAPMP
 Signal Integrity 3D Electromagnetics CFD 	。 Cloud	Emulation	Assembly Design Kits	
 Functional Verification STA Physical Verification System Planning Reliability Data Management 3D Mechanical 	 On-Prem Hybrid Secure Gov 	 ASIC FPGA Digital Twinning 	 PDK for 3DHI ADK Automation ADK Collaboration All stages of design 	
DESIGNCON® 2025 WHERE THE CHIP MEETS THE BOARD	JAN. 28–30, 2025		#DesignCon	informa markets

Information Classification: General

Cadence Assembly Design Kit (ADK)

TechFiles	Design Libraries	<section-header></section-header>		Manufacturing Rules	
Layer stack-up Material Properties	Footprints and Power/Thermal models Chiplets	Device placement constraints based on assembly pick and place equipment	Electrical spec validation of chip(let)-to-chip(let) interfaces	Board/substrate manufacturing process Substrate checks	Foundry/ semiconductor manufacturing process
Thickness	Discrete	Device to device spacing	Interconnect library		DRC
Physical/Electrical layout constraints	BGA/LGA/Interposer	Device to obstacle	I/O libraries	Soldermask checks	LVS
Line and space	Via structures	Device to edge	Eye masks	Silkscreen checks	SystemLVS
Differential signaling	D2D routing topologies	Max stack height	Jitter tolerance		Metal fill
Customized in-design DRCs	STEP Models		Insertion/return loss	Tech file compare	
RAVEL	Library compare				
Design templates					

Benefits of an Assembly Design Kit

Benefits of an ADK

Bounds the packaging challenge for highvolume design manufacturing

Creates a more seamless interaction between endcustomer and OSAT/Foundry

Provide collateral necessary to run all tools in supported flows, enabling consistency across users

Single source of truth for multi-chip packaging

Organize data so that users don't have to guess at tool setups

Prevent manual entry/error by users of critical foundry data (line spacing, vias, etc.)

Supports private and public repositories

Creates self-contained workspaces and manages versions and ECOs

An ADK is specific to a particular CAD tool/flow

DESIGNCON® 2025 WHERE THE CHIP MEETS THE BOARD Information Classification: Gene

What an ADK is NOT

Cadence helps companies build ADKs, we don't provide ADKs

ADKs are not a design/layout service

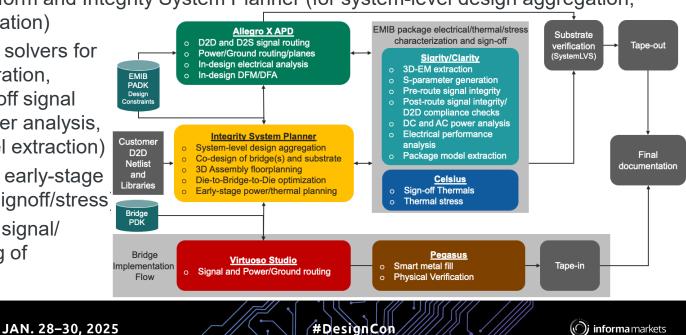
#DesignCon

For single-use case

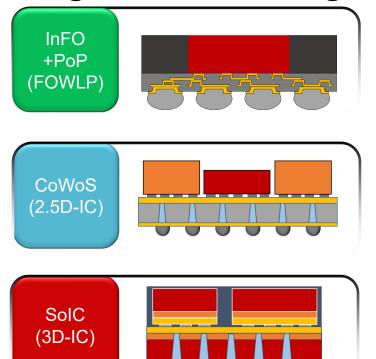
There is no industry standard for an ADK

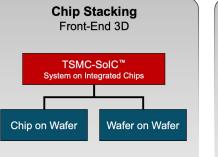
Cadence Has Tools/Flows to Support All Multi-Die, Multi-Chiplet 3D-HI Packaging

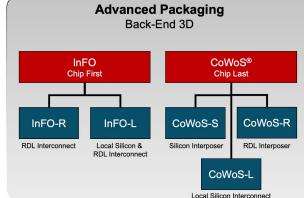
Package Type	Integrity™ 3D-IC Platform	Virtuoso® Studio (VMT)	Allegro® X Silicon Layout Option	PVS/ Pegasus™ (DRC/LVS)	Sigrity™/Clarity ™ (3D-EM, System Power, and SI)	Voltus™ Fi (Die- Level EMIR)	Celsius™ (Thermal)	EMX® (Die-Level EM)
Wirebond BGA			\checkmark		\checkmark		\checkmark	
FC BGA/LGA			\checkmark		\checkmark		\checkmark	
LTCC			\checkmark		\checkmark		\checkmark	
FOWLP			\checkmark	\checkmark	\checkmark		\checkmark	
Interconnect Bridges	✓ ^B	✓ ^B	√s		√s		\checkmark	
RDL Interposer			\checkmark	\checkmark	\checkmark		\checkmark	
Silicon Interposer	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Glass Interposer			\checkmark	\checkmark	\checkmark		\checkmark	
Bumped Stack	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bumpless Stack	\checkmark	\checkmark		√		\checkmark	√ ///)	\checkmark


JAN. 28–30, 2025

Cadence and Intel Foundry Collaborate to Enable Multi-Chip(let) Design with EMIB Packaging Technology


- Joint effort has resulted in an advanced packaging flow:
 - Cadence's Allegro[®] X APD (for placement, signal/power/ground routing, in-design electrical analysis, DFM/DFA and final manufacturing output)
 - Integrity[™] 3D-IC Platform and Integrity System Planner (for system-level design aggregation, planning and optimization)
 - Sigrity[™] and Clarity[™] solvers for two-parameter generation, early-stage and signoff signal integrity, DC/AC power analysis, and packaging model extraction)
 - o Celsius[™] solvers (for early-stage) and signoff thermal signoff/stress
 - Virtuoso[®] Studio (for signal/ power/ground routing of EMIB bridges)


Information Classification: General



Reference Flows for TSMC 3DFabric[™] Wafer-Level System

Integration Technologies

Cadence Tools Currently Certified for TSMC 3DFabric™ Flows

Function	Tools		Function	Tools	
Top-Level	Integrity™ System			Quantus™	
Management	Planner	Modeling/	Extraction	Sigrity™ XtractlM™	
	Innovus™			Clarity™	
Physical Design				Tempus™	
	Virtuoso®			Voltus™	
	Allegro [®] X		Analysis	Sigrity SystemSI	
Verification	Pegasus™-DRC Pegasus™-LVS			Sigrity PowerSI [®]	
				Celsius™	

JAN. 28-30, 2025

Cadence Transforms Chip Through Systems

Enterprise Data Platform (Cadence[®] JedAl)

JAN. 28–30, 2025

Thank you!

QUESTIONS?

John Park

Product Management Group Director, Cadence jpark@cadence.com | Cadence.com

#DesignCon

21

