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Increasing MWP penetration
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RF/mm Photonics
Integrated MWP



IMWP ASPICS

• Designed to carry only a given functionality

• Feature some degree of flexibility enabled tuning some of its internal 

parameters by means of appropriate control signals.

• Fixed physical topology.

• A considerable amount of circuits reported in the literature (SOI, InP, SiN)

• Filters

• Delay lines

• RF phase shifters

• Switches, Add/Drop MuXes

• Beamformers

• Arbitrary waveform generators

• Optoelectronic oscillators 



IMWP ASPICS

Reconfigurable Filters

J. Fandiño et al, Nature Photonics, 124–129 (2017)



IMWP ASPICS

J. Wang et al., “Reconfigurable radio-frequency arbitrary

waveforms synthesized in a silicon photonic chip, ” Nature

Comms. 6, 5957 (2015).

Tunable Arbitrary waveform generator



IMWP ASPICS 

Optelectronic Oscillators

W. Zhang, J. Yao, IEEE J. Lightwave Tech. 36, 4655-4663, (2018).

J. Tang, et al., Opt. Express 26, 12257-12265 (2018).



IMWP Multiport circuits

Signal Processors & Beamformers

Yiwei Xie, et al., nanophotonics 2017,0113 2018



IMWP ASICS

Comprehensive Reviews

2013

2019



ASPIC Limitations
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ERC-ADG-2016 UMWP-Chip Project

The main objective of UMWP-CHIP is the design, implementation and validation

of a universal integrated microwave photonics programmable signal processor, 

capable of performing the most important MWP functionalities featuring unique

broadband and performance metrics, 



ERC-ADG-2016 UMWP-Chip Project
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Beyond ERC-ADG-2016→ERC-POC-2019 FPPAS

Outsourcing special blocks outside the core
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This configuration is novel in 

photonics, but certainly not (with

some important differences) in 

electronics



Programmable 

Electronics vs

Photonics
Some comparisons and lessons 



Reusability in ITC systems

SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough 

needed to substantially reduce the cost and reduced development times of 

space access:

“60 000 000 $ total project cost, used 1000 times, becomes 

three-order magnitude reduction in space missions' costs. ”

Re-usability / versatility / flexibility / Programmability are key features 

in past and future revolutions

• In Electronics: FPGAs instead of ASICs

• In networks: SDN instead of ad-hoc topologies and configurations

• In radio: Software radio instead of specific RF receivers



Birth of Programmable Electronics

….By the end of the sixties, Noyce was worried about the rapid 

proliferation of different integrated circuits, each designed for its own 

special purpose……

…Looking ahead, Noyce saw that the solution to proliferation of special-

purpose integrated circuits would be the development of general-purpose 

chips that could be manufactured in huge quantities and adapted 

(“programmed”) for specific applications.

T.R. Reid “The Chip: How Two Americans Invented the Microchip and 

Launched a Revolution”
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Why FPGAS in Electronics?

Electronic Integrated Circuit second revolution: 

reconfigurable ICs.

Currently, programmable and multipurpose EICs 

represent more than 50% of the market.
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Electronics/Photonics: a parallel evolution?
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Electronics/Photonics: a parallel evolution?



Evolution steps in Programmable  Photonics
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Programmable 

Photonics
The Field Programmable Photonics Gate Array



The basics

FPPGAs are built using a 2D mesh of 

interconnected  reversible  2x2 unitary gates

implementing unitary analog  transformations

FPPGAs work with analog signals and unitary 2x2 

matrix Algebra U(2)
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The basics

Reversible gates are built by transforming the Pauli Matrices, which are well

known in quantum information
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The required transformations are known as Rotations



The basics
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Rotations have simple physical implementations in integrated photonics



The basics
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Rotations are  key because any unitary 2x2 matrix transformation can be obtained using the following 

cascade of rotation matrices: 
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Example: ZYZ implementation
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The basics

Feedforward signal processing architectures

Any unitary nxn transformation can be implemented by means of n(n-1)/2  two dimensional unitaries

(Hurwitz, 1897).

• Triangular (Reck et al, 1994)

• Rectangular (Clements et al, 2016)

Feedbackward signal Processing archtectures

IIR & FIR+IIR structures can be implemented by cascading full 2x2 unitary transformations and partial 1x1 and  

1x2 transformations (Pérez et al 2017).  



FPPGA core. Waveguide meshes (III)

Zhuang, et. al.,(2015)

Pérez, et. al.,(2016)

Pérez, et. al.,(2017)

Pérez, et. al.,(2019)

Core Implementations



Generic-purpose programmable RF-photonics processors

11/25/2019 33

Video

Nature Communications 8, 636, 2017



Additional Hardware Elements

Tier 1: Photonics

Tier 2: Electronics and RF-mmW
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Tier # 2 Control, Monitoring and Driving Electronics

Tier #3 Programming/Technology Mapping/Optimization Software 
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Tier # 1 Integrated Photonics
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Classical devices

Quantum devices

Waveguide
Mesh

- NxN programmable
Linear mode
transformers
- Tunable filers
- Switches
Delay lines

HPBs

- Photodetectors
- Optical sources
- Tunable filters
- Switches
- Modulators
- Delay lines

QHPBs

- Spiralled nanowire
SFWM   single Photon
sources
- CROW single photon
SFWM sources
- Integrated Bragg+ Ring 
cavity SFWM single 
Photon sources
- Integrated Single 
photon detectors
-Ancilla qbit readers

I/O

- Chip-chip couplers
- Chip-fiber couplers





Hardware Scalability challenges

Electrical Interfacing

System integration

Optical crosstalk

Tuning crosstalk
Optical monitoring points.

Power consumption

Accumulated optical loss

Some of them can be mitigated by a smart software layer and thanks to the 

massively interconnected nature of the FPPGA core.



Software Challenges 

Control and operation based on global algorithms and presets

• Requires the pre-characterization of the FPPGA core.

• Includes preset configurations, auto-routing algorithms, user-defined configurations.

Control and operation based on computational optimization 

algorithms

• Enables self-configuring, self-healing, black-box optimizations and mitigates non-ideal operation 

of photonic components.

High Level Description and specification language

• To enable the high-level programming of the FPPGA resources.



Develop / compute control vectors for each configuration: 

C1 = [ H01U, H01D, H02U, H02D, …, H30D]

C2 = [ H01U, H01D, H02U, H02D, …, H30D]

C3 = [ H01U, H01D, H02U, H02D, …, H30D]

Predefined pre-sets.
A. López et al., presented at ECOC 
2019.

J. Capmany, D. Pérez, “Programmable
Integrated Photonics”, in press Oxford 
University Press (2019)

Control and operation based on global algorithms and presets



Cross State Not used (available) Bar State Tunable Coupler (TC)
TC
Phase Shifter
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Applications

Sensors

HW acceleration

Bio instruments5G and Beyond

Internet of Things

Transport

Neurocomputing

and AI

Quantum 

Information



More Information?, stay tuned

Jan-Feb 2020
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Summary and Conclusions

- MWP is becoming a key enabling technology in a variety of application scenarios

- For efficient penetration into these photonic integration is key

- A considerable number of Application Specific Photonic Integrated Circuits

(ASPICs) have been reported with a limited degree of functionality

- Functionality and cost efficiency can be improved by means of reconfigurability. A 

general purpose programmable chip for MWP applications is under current R&D

- Programmable chips with the incorporation of extra elements (IP blocks, control 

electronics and specialized software) enable the equivalent of the electronic

FPGA

- The FPPGA relies on different basic operations (analog vs digital) compared to

electronics, but these are required to handle lightwave signals

- FPPGA applications span a myriad of fields other than MWP



Take Away Messages

Programmable Photonics is going to happen, YES or YES.

It shares commonalities with integrated Electronics

Yet it is completely different
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Landmarks in programmable electronics

1974
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1984
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4004 Memory 
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Shockley 
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Is the right time for FPPAS?

50

Age of Invention
- Cost containment

- Maximize efficiency in cost & functionality

- Eliminate waste in logic blocks

- Design efficient 2D interconnection

- Manual design, placement & routing

- Multi-Chip partitioning

Age of Expansion 
- Moore law enabled doubling the size of largest FPGAs and

halving cost per function (area less precious)

- Smaller & simpler logic units/more complex logic blocks

- Longer connections not only nearest neighbors

- Design automation (placing, routing synthesis) essential

- Increase in addressable ASIC market

Age of Accumulation
- Larger size FPGAs are no longer essential

- FPGAs include logic function + High performance predefined

building dedicated blocks interconnected

- Customized products for communications

(1984-1991)

(1992-1999)

(2000-2007)

Age of Invention
- Material technology platform

- Maximize efficiency in cost & functionality

- Define photonic analog gates/locks

- Design efficient 2D interconnection meshes

- Manual design, placement & routing

- Automatic control, bias, monitoring

- Interfacing with RF and electronic bias

(2015-2022)

Electronics Photonics



Is the right time for FPPAS?
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Photon Wavelength

Electron Wavelength
»103 Þ

Photonic Integration density/surface unit 

Electronic Integration density/surface unit
»10-3

Integration density when

FPGA was proposed 106

Equivalent Integration density when

FPPGA have been proposed 106x10-3=103



Analog vs Digital Bit Processing
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Qubits are analog processed (amplitudes), using the

rules of 2x2 unitary Matrix Algebra

In digital electronics, bits 0 and 1 are digitally

processed using the rules of Boolean Algebra 

		
	q =a 	0 + b 	1

		
	q' =a ' 	0 + b ' 	1

		

y = f (a,b)

a,b = {0,1}

Digital Electronics Quantum Optics
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Example 1: Heralded CNOT Quantum Gate implementation
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Example 2: Switched quantum circuits
(Boson Sampler & Hadamard gate)
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Example 3: Simultaneous quantum circuits
(Rotation cascade and Hadamard Gate)



Example 4: Quantum Fourier Tranformer
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